UIF: il machine learning per combattere la criminalità
Un modello di machine learning aiuterà per l'identificazione di aziende collegate alla criminalità organizzata in Italia.
Nello studio viene sviluppato un algoritmo di machine learning per rilevare aziende potenzialmente collegate alla criminalità organizzata (CO). A questo scopo, si utilizza un dataset di imprese italiane ottenuto integrando informazioni finanziarie provenienti da varie fonti, tra cui dati di bilancio. Per addestrare e testare il modello, un campione di oltre 28.000 aziende italiane, caratterizzate da una elevata probabilità di essere collegate alla CO, viene confrontato con sottoinsiemi di aziende presumibilmente "sane" selezionati casualmente. I risultati ottenuti mostrano che, in fase di test, l'algoritmo identifica con successo circa il 76% delle aziende collegate alla CO (recall) e il 74% delle aziende presumibilmente "sane" (specificity). Il principale output dell'algoritmo è un punteggio di rischio, che potrebbe essere utilizzato a livello operativo per supportare l'azione delle autorità anti-riciclaggio e delle forze dell'ordine (ad esempio, come strumento di screening preliminare).